
Annex 5

Data extraction from newspaper’s web page and comparison

On the whole set of articles, a total of 145, only for five of them has been possible to write
comments straight on the article’s web page. The same articles have also been available
for comments at Facebook and Twitter. The next table lists those articles commented in
the same web page.

As shown in the table three newspapers displayed comments in their web pages, each
newspaper offered apparently similar commenting systems, but in reality they use different
mechanisms, it is interesting to analyse them separately.

Newspaper “Independent” shows user names with bold characters, “Reply” link with red
colour, both capture the attention. Two icons “thumb up” and “thumb down” with the
number of likes in the middle. The number of likes is the algebraic sum of positive and
negative score.

Newspaper “Daily Mail” shows the number of likes and the number of dislikes separately.

Newspaper “Daily Express” calculates the number of likes as algebraic sum of positive and
negative score, moreover allows to share or report the comment. Some users make
available their avatar picture.

An important finding common to the three newspapers web site commenting system is
related to anonymity, users account do not really disclose personal information, users
identity cannot be validated by any mean, even for those few users with real faces as
avatars. Moreover the censorship activity removed some avatars and comments.

The three newspapers do not make available Application Program Interfaces (APIs), a
third part service, newsapi.org provides APIs that get news from Independent and Daily
Mail. There are no APIs able to read comments.

In order to extract the network diagram and the set of comments from newspapers web
sites it has been necessary to develop specific software programs that implement web
scraping techniques.

The first step analyses the Hypertext Markup Language (HTML) code behind the web
pages for searching patterns that allow to capture data. The syntax used is XPath, it allows
to find elements in the HTML code.

date media

29 22/07/18 Independent 76
68 23/07/18 Daily Mail 41
69 22/07/18 Daily Mail 452

107 23/07/18 Daily Express 33
108 23/07/18 Daily Express 20

Internal
id

n. of
comments

Independent newspaper web comments (internal id 29)

The next picture shows the comment section, user names are not obfuscated because
they do not disclose real identities.

The elements to capture are the user name, the comment text and the position to
determine whether is a direct comment or a reply to an existing comment.

The analysis ot HTML code resulted in the following patterns:

• user name is coded as span element with attribute class = “user”
• comments are coded as div element with attribute class = “comment-text”
• elements “data-comment-id” and “class” indicate the level of reply

The next illustration shows the code in R programming language for extracting data.

library(rvest)
library(dplyr)
library(grr)
library(igraph)
html_doc <- read_html(paste0(dir_tests,art_num,'.html'), encoding = 'UTF-8')
node_comments <- html_nodes(html_doc, xpath = "//div[@class='comment card']")
len_df = length(node_comments)
df <- data.frame(

'un' = character(len_df), # user name
'dd' = character(len_df), # data-comment-id
'cn' = character(len_df), # class name
'nl' = integer(len_df), # number of likes
'nd' = integer(len_df), # number of dislikes
'cm' = character(len_df), # comments text
stringsAsFactors=FALSE

)
for (ind in 1:len_df) {

df[ind,2] <- html_attr(html_nodes(node_comments[ind], xpath = "."),'data-comment-
id')

df[ind,3] <- html_attr(html_nodes(node_comments[ind], xpath = ".."),'class')
}
df$un <- html_text(html_nodes(node_comments, xpath = "//span[@class='user']"))
df$nl <- as.integer(html_text(html_nodes(node_comments, xpath = "//span[@class='vote-
count'][1]")))
df$nd <- as.integer(html_text(html_nodes(node_comments, xpath = "//span[@class='vote-
count'][2]")))
df$cm <- html_text(html_nodes(node_comments, xpath =
"//div[@class='comment-text']/text()"))
re <- 1
for (ind in 1:len_df) {

if (df[ind,1] == '[removed]') {
df[ind,1] <- paste0('removed_',re)
re <- re + 1
}

}
df[is.na(df)] <- ''
df$rp <- ''
for (ind in 1:len_df) { if (! df[ind,2] == '') { df[ind,7] <- newspaper } }
for (ind in 1:len_df) {

if (df[ind,7] == '' & df[ind,3] == 'replies-1') {
un <- df[ind - 1,1]
wnd <- ind
while (df[wnd,7] == '') {

if (df[wnd,3] == 'replies-1') { df[wnd,7] <- un }
wnd <- wnd + 1

}
ind <- wnd
}

}
for (ind in 1:len_df) {

if (df[ind,7] == '' & df[ind,3] == 'replies-2') {
un <- df[ind - 1,1]
wnd <- ind
while (df[wnd,7] == '') {

if (df[wnd,3] == 'replies-2') { df[wnd,7] <- un }
wnd <- wnd + 1

}
ind <- wnd
}

}
fqun <- as.data.frame(table(df$un)) # get unique records of user names and calculates
frequencies
fqun <- mutate(fqun, id = rownames(fqun)) # adds column id and populates it
colnames(fqun)[1] <- 'name'
df$un <- as.factor(df$un)
dict <- grr::matches(fqun$name, df$un)
dict_sorted <- dict[order(dict[,2]),]
df <- cbind(df,dict_sorted[,1])
colnames(df)[8] <- 'id_un'
df$id_rp <- match(df$rp, fqun$name, 0)
df$id_rp[df$id_rp==0] <- 'A'
ph <- vector('character');
len <- nrow(df)
for (row in 1:len){

ph <- c(ph,c(df[row,9],df[row,8]))
}
gr <- graph(ph,directed = FALSE)

The next illustration shows the network diagram

The central node is the article’s author. All names are replaced by numbers. The network
diameter is 6.

Now proceed with the comparison between the article’s text and the set of comments.

The next illustrations show the word cloud representations of the article and the comments
with a minimal frequency of two words and the pyramid diagram of common words.

The R programming code is the same shown in annex 4 titled “Comparison between
article’s text and comments”

Jaccard similarity value calculated is 0.33

Daily Mail newspaper web comments (internal id 68)

The next picture shows the comment section, user names are not obfuscated because
they do not disclose real identities.

The elements to capture are the user name, the comment text and the position to
determine whether is a direct comment or a reply to an existing comment.

The analysis ot HTML code resulted in the following patterns:

• user name is coded as p element with attribute class = “user-info”
• comments are coded as p element with attribute class starting with “comment” or

“reply”
• elements after elements p with attribute class = “user-info” indicate the level of reply

The next illustration shows the code in R programming language for extracting data.

library(rvest)
library(dplyr)
library(grr)
library(igraph)

html_doc <- read_html(paste0(dir_tests,art_num,'_comments.html'), encoding = 'UTF-8')
node_comments <- html_nodes(html_doc, xpath = "//div[starts-with(@id,'comment-')]")
len_df = length(node_comments)

user names
un <- html_text(html_nodes(node_comments,xpath="//p[@class='user-info']/a/text()"))
comments text
cm <- html_text(html_nodes(node_comments,xpath="//p[starts-with(@class,'comment') or
starts-with(@class,'reply')]/text()"))
number of likes
nl <- as.integer(html_text(html_nodes(node_comments,xpath="//div[@class='rate-up']/
following-sibling::div[@class='rating-button-inline']/text()")))
number of dislikes
nd <- as.integer(html_text(html_nodes(node_comments,xpath="//div[@class='rate-down']/
following-sibling::div[@class='rating-button-inline']/text()")))
type of comment
tc <- html_text(html_nodes(node_comments,xpath="//p[@class='user-info']/following-
sibling::p/@class"))
tc <- gsub('.*comment.*','comment',tc)
tc <- gsub('.*reply.*','reply',tc)

df <- data.frame(
'un' = character(len_df),
'nl' = integer(len_df),
'nd' = integer(len_df),
'cm' = character(len_df),
'tc' = character(len_df),
stringsAsFactors=FALSE

)

df$un <- un
df$nl <- nl
df$nd <- nd
df$cm <- cm
df$tc <- tc

fqun <- as.data.frame(table(df$un)) # get unique records of user names and
calculates frequencies
fqun <- mutate(fqun, id = rownames(fqun)) # adds column id and populates it
colnames(fqun)[1] <- 'name'
df$un <- as.factor(df$un) # otherwise grr::matches fires error
dict <- grr::matches(fqun$name, df$un)
dict_sorted <- dict[order(dict[,2]),]
df <- cbind(df,dict_sorted[,1])
colnames(df)[6] <- 'id_un'

block extract comments ---
fcon <- file(paste0(dir_tests,art_num,'_comments.txt'))
writeLines(toString(df$cm), fcon)
close(fcon)

block net graph ---
ph <- vector('character');
len <- nrow(df)
for (row in 1:len){

if (df[row,5] == 'comment') { ph <- c(ph,c('A',df[row,6])) }
if (df[row,5] == 'reply') {
uid <- df[row-1,6]
while (df[row,5] == 'reply') {

ph <- c(ph,c(uid,df[row,6]))
row <- row + 1

}
}

}
gr <- graph(ph,directed = FALSE)

The next illustration shows the network diagram

The central node is the article’s author. All names are replaced by numbers. The network
diameter is 4.

Now proceed with the comparison between the article’s text and the set of comments.

The next illustrations show the word cloud representations of the article and the comments
with a minimal frequency of two words and the pyramid diagram of common words.

The R programming code is the same shown in annex 4 titled “Comparison between
article’s text and comments”

Jaccard similarity value calculated is 0.32

Daily Mail newspaper web comments (internal id 69)

The next picture shows the comment section, user names are not obfuscated because
they do not disclose real identities.

The analysis ot HTML code and R programming code are the same as previous web
comments (internal id 68)

The next illustration shows the network diagram

The central node is the article’s author. All names are replaced by numbers. The network
diameter is 4.

Now proceed with the comparison between the article’s text and the set of comments.

The next illustrations show the word cloud representations of the article and the comments
with a minimal frequency of two words and the pyramid diagram of common words.

The R programming code is the same shown in annex 4 titled “Comparison between
article’s text and comments”

Jaccard similarity value calculated is 0.36

Daily Express newspaper web comments (internal id 107)

The next picture shows the comment section, user names are not obfuscated because
they do not disclose real identities.

The elements to capture are the user name, the comment text and the position to
determine whether is a direct comment or a reply to an existing comment.

The analysis ot HTML code resulted in the following patterns:

• user name is coded as span element with attribute data-spot-im-class = “message-
username”

• comments are coded as div element with attribute data-spot-im-class = “message-
text”

• the level of reply is coded in a extremely complicated way, since the number of
comments is low therefore has been more convenient to fill this information
manually based on a built table

The next illustration shows the code in R programming language for extracting data.

library(rvest)

html_doc <- read_html(paste0(dir_tests,art_num,'_comments.html'), encoding = 'UTF-8')
un <- html_text(html_nodes(html_doc, xpath = "//span[@data-spot-im-class='message-
username']/text()"))
cm <- html_text(html_nodes(html_doc, xpath = "//div[@data-spot-im-class='message-text']/
text()"))

len_df = length(un)

df <- data.frame(
user name
'un' = character(len_df),
comments text
'cm' = character(len_df),
stringsAsFactors=FALSE

)

df$un <- un
df$cm <- cm

write.csv(df,paste0(dir_tests,art_num,'_comments.csv'))

then manual fill

block extract comments ---
fcon <- file(paste0(dir_tests,art_num,'_comments.txt'))
writeLines(toString(df$cm), fcon)
close(fcon)

block net graph ---

library(dplyr)
library(grr)

dir_tests <- '/home/oreste/Downloads/'
art_num <- 107
newspaper <- 'Express'

df <- read.csv(paste0(dir_tests,art_num,'_graph.csv')) # filled manually

un = user name
cm = comments text
nl = number of likes
rp = replies to (character)
le = level of reply (1 to 4)

fqun <- as.data.frame(table(df$un)) # get unique records of user names and
calculates frequencies
fqun <- mutate(fqun, id = rownames(fqun)) # adds column id and populates it
colnames(fqun)[1] <- 'name'
df$un <- as.factor(df$un) # otherwise grr::matches fires error
dict <- grr::matches(fqun$name, df$un)
dict_sorted <- dict[order(dict[,2]),]
df <- cbind(df,dict_sorted[,1])
colnames(df)[5] <- 'id_un'

df$id_rp <- match(df$rp,fqun$name, 0)

write.csv(df,paste0(dir_tests,art_num,'_igraph.csv'))

#---
library(igraph)

dir_tests <- '/home/oreste/Downloads/'
art_num <- 107
newspaper <- 'Express'

df <- read.csv(paste0(dir_tests,art_num,'_igraph.csv'))
df[df==0]<-'A'

ph <- vector('character');
len <- nrow(df)
for (row in 1:len){ ph <- c(ph,c(df[row,7],df[row,6])) }

gr <- graph(ph,directed = FALSE)

The next illustration shows the network diagram

The central node is the article’s author. All names are replaced by numbers. The network
diameter is 4.

Now proceed with the comparison between the article’s text and the set of comments.

The next illustrations show the word cloud representations of the article and the comments
with a minimal frequency of two words and the pyramid diagram of common words.

The R programming code is the same shown in annex 4 titled “Comparison between
article’s text and comments”

Jaccard similarity value calculated is 0.28

Daily Express newspaper web comments (internal id 108)

The next picture shows the comment section, user names are not obfuscated because
they do not disclose real identities.

The analysis ot HTML code and R programming code are the same as previous web
comments (internal id 107)

The next illustration shows the network diagram

The central node is the article’s author. All names are replaced by numbers. The network
diameter is 4.

Now proceed with the comparison between the article’s text and the set of comments.

The next illustrations show the word cloud representations of the article and the comments
with a minimal frequency of two words and the pyramid diagram of common words.

The R programming code is the same shown in annex 4 titled “Comparison between
article’s text and comments”

Jaccard similarity value calculated is 0.28

